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Received 16 December 1996

Abstract. Using an operator approach, Messina and Paladimo have recently demonstrated a
method of evaluating a multiple generating function of the product of generalized Laguerre
polynomials, and arrived at the solution which is given implicitly. By using an addition theorem
of Vilenkin for the Laguerre polynomials, which has its origin in group theory, we are able to
give an explicit formula for the multiple generating function in terms of elementary symmetric
functions. It is further shown that the multiple generating function is a symmetric function, an
interesting property which is not altogether obvious from the solution via the operator approach.

1. Introduction

Arising from works on the properties of the ground state of a two-level system linearly
coupled to a set of quantum harmonic oscillators, Messina and Paladimo [1] have discussed
a method of evaluating the following multiple generating function of the product of
generalized Laguerre polynomials, viz

∞∑
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z
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sn
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(s1−s2)
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Their approach essentially relies on the observation that the trace of a certain sequence of
operators can be evaluated using two different bases. By equating the two constructed
expressions of the trace in a common region of convergence, they have succeeded in
obtaining an expression, in implicit form, of the multiple generating function in (1).

As alluded to in [1], this generating function seems to have wide applications, and
occurs in a myriad of situations in physics and chemistry where a displaced number of
states of a harmonic oscillator are involved. It is therefore highly desirable that an exact
expression of (1) can be found. By using a special case of an interesting addition theorem
for the generalized Laguerre polynomials discussed by Vilenkin in connection with the
group representation of special functions, we are able give an explicit expression for the
multiple generating function in (1) in terms of elementary symmetric functions. We show
further that it is a symmetric function of the variablesz1, z2, . . . , zn, a fact which is not
easily discernible from the solution by Messina and Paladimo.

2. Derivation of the explicit result

The interesting special case of Vilenkin’s addition theorem, a bilinear generating function
formula for the generalized Laguerre polynomials endowed with the property of additivity
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of the parameters [2], (cf [3]) may be stated as follows:
∞∑
j=0

(c1)
j−lL(j−l)l (b1c1)(c2)

k−jL(k−j)j (b2c2)

= e−c1b2(c1+ c2)
l−kL(l−k)l [(b1+ b2)(c1+ c2)] (2)

where the parametersc1, c2, b1 andb2 are arbitrary, and|c1| < |c2|.
In order to bring Vilenkin’s formula to bear on the derivation, let us consider first of

all the following related multiple generating function:
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Let us define
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(bncn) i = n.
If we sum from (3), starting withs2 onwards and successively up tosn−1, by using the
following recursion relation
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we find, on account of Vilenkin’s result in (3), that
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The last summation forsn is
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Finally, the first summation with respect tos1 is now performed, giving
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∞∑
s1=0
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on using the following well-known generating function for the simple Laguerre polynomials
[4]:

∞∑
n=0

tnLn(x) = 1

1− t exp

(
− xt

1− t
)

|t | < 1. (7)

If we now make the following identifications
ci−1

ci
= zi 16 i 6 n

bjcj = x 16 j 6 n (8)

we see thatIn in (3) is identical to the multiple generating function in (1) which we set out
to evaluate, and furthermore from (8) we have

bicj =


x(zizi+1 . . . zj−1)

−1 i < j

x i = j
x(zj zj+1 . . . zi−1) i > j .

(9)

If we use the relations in (9), it is quite straightforward, albeit a little tedious, to show
that explicitly

1− αn = 1

1− σn
αnβn = x

1− σn

(
nσn +
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i=1
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)
(10)

where the elementary symmetric functionsσi are defined as

σ0 = 1
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n∑
i<j

zizj

σ3 =
n∑

i<j<k
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...

σn = z1z2 . . . zn.

Finally, with the substitutions of the values from (10) into (4),In gives the explicit formula
for the multiple generating function relation in (1).

3. Discussions

It is easily verified thatI1, I2 and I3 from (4) check with the corresponding results given
in (50), (51) and (52), respectively, as mentioned in [1].

Furthermore, from the following easily derived generating function relation for theσi ,
06 i 6 n,

ψ(t) =
n∑
i=0

t iσi =
n∏
i=1

(1+ zi t) (11)
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the result in (4) may be written as

In = 1

1− σn exp−
{

x

1− σn [(n− 1)σn + ψ(1)− 1]

}
n > 1 (12)

from which it is clear thatIn is a symmetric function of the variablesz1, z2, . . . , zn. This
property is not apparent from the form of (1), nor is it obvious from the implicit solution
given in [1].

The convergence requirements in the successive summation operations using Vilenkin’s
formula in (2) and, subsequently, the generating function relation of the simple Laguerre
polynomials implyiter alia that∣∣∣∣ j∑

i=1

ci

∣∣∣∣ < |cj+1| 16 j 6 n− 1

|c0| < |cn|. (13)

On account of the relations in (8), these are translated into

|zi | < 1 26 i 6 n
|z1z2 . . . zn| < 1.

Since, as shown earlier thatIn is a symmetric function of the variablesz1, z2, . . . , zn, we
see that the conditions for convergence may be given as|zi | < 1, 1 6 i 6 n. This is to be
compared with the more restrictive condition which is equivalent to|zi | < 1/2, 1 6 i 6 n
as derived in [1].

It is perhaps worthwhile mentioning in passing that the forms of the Laguerre
polynomials in (1) are actually the Charlier polynomialscn(m; x), since [5]

cn(m; x) = (−x)−nn!L(m−n)n (x)

cn(m; x) = cm(n; x).
From this observation, the multiple generating function in (1) may be written as

∞∑
s1,s2,...,sn=0
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The following is Meixner’s bilinear generating function for the Charlier polynomials
[6], which is equivalent to the special case of the addition theorem of Vilenkin, viz
∞∑
k=0
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)
. (15)

We could have used the formula in (15) to affect the successive reduction of the multiple
generating function in (14), very much akin to the procedure we used earlier. We find,
however, that in this form the recursion relations are somewhat unwieldy to use in order to
arrive at the final solution.
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